יום שבת, 11 ביוני 2011

שימוש מושכל ברמזי לשון בעת פתרון בעיות במספרים טבעיים מאת תלמה גביש


שימוש מושכל ברמזי לשון
בעת פתרון בעיות במספרים טבעיים
תלמה גביש

ב"מתמטיקה יסודית" מתבקש התלמיד כבר בתחילת כיתה א' להמציא בעצמו סיפורים חשבוניים על ציורים נתונים, למצוא יחסים מתמטיים בין מרכיבי הציור ולתרגמם לעברית. מובן, שמי שממציא לבדו בעיות מתמטיות, יודע לפתור בעיות מילוליות, ועליו להיעזר ברמזים מילוליים, כמו: בסך הכל, ועוד וכו'.
אלא, שאליה וקוץ בה, יש ביטויים לשוניים שעלולים להטעות את הילד, כמו:
יותר מ ב.. , פחות מ ב.. , בכמה יותר , בכמה פחות ,
יותר מ פי , פחות מ פי , פי כמה יותר , פי כמה פחות
לא תמיד "יותר" פירושו תוספת, לא תמיד "פחות" פירושו הפחתה. זה המצב גם בפעלים שמתארים חיסור של גריעה, כמו: אכלתי, זרקתי, נשברו, לקחו, הורידו, נשרו... אותם הפעלים מובילים לחיסור, אבל לפעמים גם לחיבור. לדוגמה:
בעיית חיסור
על העץ היו 9 תפוחים. 2 תפוחים נשרו בבוקר מהעץ. כמה תפוחים נשארו על העץ?
בעיית חיבור
על העץ היו 9 תפוחים. 2 תפוחים נשרו בבוקר מהעץ. אחר הצהרים נשרו  3 תפוחים. כמה תפוחים נשרו? 
ילד שמסתמך על הרמז הלשוני: "נשרו" ועל הקירבה הלשונית בין שתי הבעיות עלול לחשוב שהבעייה השנייה היא בעיית חיסור.
המאמר שלפנינו עוסק במילות מפתח להבעת יחסים מתמטיים ולהוראה שתכוון לשימוש נכון בהן, בעת פתירה או המצאה של בעיות במספרים טבעיים.

כל סיפור חשבוני עוסק ביחס מתמטי בין גדלים, מכאן חשיבות הסיפורים, חשיבות ההבנה של היחס וחשיבותם המיוחדת של המושגים הקובעים את טיב היחסים בין מרכיבי הבעיות.
גודל
מובניה של המילה גודל בעברית:

1. גודל פיזי

לדוגמה:
השולחן הזה גדול מהשולחן ההוא.
או:
התקציב לשנה הנוכחית גדול מהתקציב לשנה שעברה.
גודל פיזי יכול לעבור תהליך כימות שמתבטא בהעברתו ליחידות. לדוגמה, המשפט: "אורך הקו הוא 7 ס"מ" אומר שהקו חולק ל - 7 קטעים שֶשֵם כל אחד מהם הוא סנטימטר. גודלו של הקו הוא אורכו והוא נמדד במספר הקטעים הכלולים בו שאותם אנחנו מונים, כלומר בכמותם של הקטעים האלה שהםיחידות מידה.

2. גודל כמשתנה כמותי המתבטא במספר
בתיאור סוגי היחסים שנוצרים על ידי כמות העפרונות שבידי כרמלה וסער, שלהלן, השתמשנו בגודלבמובן של משתנה כמותי, שפירושו: כמות המצוייה ביחס כלשהו לכמות אחרת.
כדי להימנע מבלבול בכיתה, איננו  ממליצים  להשתמש בביטויים  גודל קטן  ,  גודל גדול.
המינוחים שיש להשתמש בהם בעת ההוראה: כמות, ערך ויחס. לדוגמה: הערך הקטן, הערך הגדול.
עם זאת, אפשר לחשוף את הילדים למושג גודל, להסביר את כפל המשמעויות שלו ולציין שבהקשר הנדון הכוונה היא לכמות המקיימת יחס כלשהו עם כמות אחרת ולאו דווקא לגודל פיזי. כלומר, הכוונה היא למציאת יחס בין שני ערכים.
 יחס

למילה יחס מובנים שונים.

המובן הראשון:

קשר כלשהו בין דברים.
לדוגמה:
יחס מרחבי. [הספר מונח על השולחן.]
יחס רגשי .[איילת אוהבת את דני.]
יחס היררכי. [יחסי עובד מעביד.]
ועוד.
המובן השני:

יחסי גודל מתמטיים המתבטאים בחיבור וחיסור. לדוגמה:  8 גדול מ - 2  ב.
לסוג זה של יחסים משתייכים המינוחים:
יותר מ ב..
פחות מ ב..
בכמה יותר
בכמה פחות

המובן השלישי:

יחס המתבטא בפעולות של כפל וחילוק , כדוגמת שברים פשוטים ואחוזים. 
לסוג זה של יחסים משתייכים המינוחים:
פי כמה יותר
פי כמה פחות
גדול פי
קטן פי
כאשר שואלים: "מה היחס בין שני מספרים." מתכוונים ליחס המתבטא בפעולות כפל וחילוק.


יחסי גודל המתבטאים בחיבור וחיסור

המינוחים המבטאים יחסים אלה הם:
יותר מ ב  , פחות מ ב,   בכמה יותר,  בכמה פחות.
כל אחד מהם מוביל לשתי פעולות חשבון הפוכות זו מזו, בהתאם לנתוני הבעייה.

דוגמאות

דוגמא ל - יותר מ
המובילה לחיבור
לעינת יש 8 גולות יותר מאשר ליותם. ליותם 12 גולות. כמה גולות לעינת?

ליותם יש פחות מאשר לעינת. מספר הגולות שלו הוא המספר הקטן. כדי לדעת כמה גולות יש לעינתמחברים את ההפרש [8 גולות] למספר הקטן, כלומר, למספר הגולות של יותם
20 גולות =  8 גולות  +  12 גולות
דוגמא ל - יותר מ
המובילה לחיסור
לעינת יש 8 גולות יותר מאשר ליותם. לעינת 12 גולות. כמה גולות ליותם?

נתון המספר הגדול [12 הגולות של עינת] ורוצים לקבל את המספר הקטן [הגולות של יותם].
התרגיל :
4 גולות =  8 גולות  -  12 גולות

דוגמא ל - פחות מ
המובילה לחיבור
מספר האגוזים של אילן פחות ב - 6 מזה של רון. לאילן יש 14 אגוזים. כמה אגוזים לרון?

נתון הערך הקטן, עלינו לחבר כדי להגיע לערך הגדול.
התרגיל:
20 אגוזים  =  6 אגוזים  +  14 אגוזים

דוגמא ל - פחות מ
המובילה לחיסור

ת: לעמיר יש 20 אגוזים. מספר האגוזים של אילן פחות ב - 6 מזה של עמיר. כמה אגוזים לאילן?

נתון הערך הגדול, כדי לקבל את הערך הקטן, נחסר ממנו 6.
התרגיל:
14 אגוזים  =  6 אגוזים  -  20 אגוזים


הצעה לדיון שינחה את הילדים לשימוש נכון ומודע בלשון להצגת מערכות יחסים מתמטיות
מ: כרמלה וסער גשו אלי. אני נותנת לכם ביד מספר פריטים.
כרמלה הראי לכיתה מה קיבלת.
כרמלה: המורה נתנה לי 12 עפרונות.
מ: סער, מה קיבלת?
סער: 4 עפרונות.
מ: מי יכול לספר סיפורי חשבון רבים ככל האפשר על העפרונות של כרמלה ושל סער? אני רושמת את ההצעות שלכם על הלוח וממספרת אותן.
1) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. כמה עפרונות יש להם ביחד?
2) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. למי יש יותר עפרונות? בכמה?
3) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. למי יש פחות עפרונות? בכמה?
4) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. כמה עפרונות יש לכרמלה יותר מאשר לסער?
5) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. כמה עפרונות יש לסער פחות מאשר לכרמלה?
6) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. בכמה גדול מספר העפרונות של כרמלה ממספר העפרונות של סער?
7) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. בכמה קטן מספר העפרונות של סער ממספר העפרונות של כרמלה?
8) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. לכרמלה יש ________ עפרונות יותר מאשר לסער.
9) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. לסער יש _______ עפרונות פחות מאשר לכרמלה.
10) ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. כמה עפרונות כרמלה צריכה לתת לסער כדי שמספר העפרונות של שניהם יהיה שווה?
11) ת: [שגוי]  לכרמלה 12 עפרונות. לסער 4 עפרונות. כמה עפרונות סער צריך לתת לכרמלה כדי שמספר העפרונות של שניהם יהיה שווה?
מ: נפתור ביחד את הבעיות שרשמתי על הלוח. איך נפתור את (1) ?
1)  לכרמלה 12 עפרונות. לסער 4 עפרונות. כמה עפרונות יש להם ביחד?
ת: נחבר 12 ו - 4.
התרגיל יהיה:
16 עפרונות =  4 עפרונות +  12 עפרונות
ביחד היו להם 16 עפרונות.
מ: נפתור את (2).
 2)  לכרמלה 12 עפרונות. לסער 4 עפרונות. למי יש יותר עפרונות? בכמה?
ת: לכרמלה יש יותר עפרונות. כדי למצוא בכמה יותר, נחסר 4 מ - 12. 
התרגיל יהיה:  8 עפרונות  =   4 עפרונות  -  12 עפרונות
לכרמלה יש  8 עפרונות יותר מאשר לסער.
מ: נפתור את (3).
3)  לכרמלה 12 עפרונות. לסער 4 עפרונות. למי יש פחות עפרונות? בכמה?
ת: לסער יש פחות עפרונות. כדי למצוא בכמה פחות, נחסר 4 מ - 12.
התרגיל יהיה:  8 עפרונות =  4 עפרונות -  12 עפרונות
מ: מה אפשר לומר על 3 הבעיות האלה?
ת: אחת מהן עוסקת בחיבור. שתי האחרות עוסקות בחיסור.
מ: נתייחס לשתי בעיות החיסור. מה משותף להן?
ת: התרגיל.
מ: מה מצאנו בתרגיל?
ת: את ההפרש בין מספר העפרונות של כרמלה ושל סער.
מ: התרגיל זהה. האם הבעיות זהות?
ת: לא. הנתונים היו אותם הנתונים, אבל ב - (2) שאלו בכמה יותר  וב - (3) שאלו בכמה פחות.
מ: השאלות של הבעיות היו שונות והתרגילים שווים. מה המסקנה שלכם?
ת: כאשר נתונים שני גדלים, ושואלים "בכמה יותר" או "בכמה פחות" עלינו למצוא את ההפרש. הפרש מתקבל על ידי החסרת המספר הקטן מהמספר הגדול.
מ: נראה ממה מורכבות שתי הבעיות האלה: כמות העפרונות של כרמלה , כמות העפרונות של סער והקשר ביניהם. נתונות שתי הכמויות ועלינו למצוא את הַקֶּשֶר ביניהן.
מ: נפתור את (4).
4)  לכרמלה 12 עפרונות. לסער 4 עפרונות. כמה עפרונות יש לכרמלה יותר מאשר לסער?
ת: זו בדיוק בעייה (2), רק הניסוח שונה.
מ: נכון. נעבור ל - (5).
5)  לכרמלה 12 עפרונות. לסער 4 עפרונות. כמה עפרונות יש לסער פחות מאשר לכרמלה?
ת:  זו בדיוק בעייה (3), רק הניסוח שונה.
מ: נכון. נעבור ל - (6).
ת: אני כבר רואה שבעיות (6) , (7) , (8)  ו - (9), כולן מאותו סוג של (2), (3) , רק הניסוחים שונים.
מ: נסכם את מה שלמדנו עד עכשיו בבעיות שהצעתם.
ת: היו נתונים שני גדלים, כלומר שתי כמויות או שני ערכים, ואנחנו חיפשנו את היחס ביניהם, חיפשנובכמה אחד מהם גדול מהשני,  או קטן מהשני.
מ: צדקתם. אני מוסיפה בעייה:
12) לכרמלה יש 8 עפרונות יותר מאשר לסער. לסער יש 4 עפרונות. כמה עפרונות יש לכרמלה? מה החידוש שבבעייה הזאת לעומת בעיות (2)  -  (9) ?
ת: בבעייה (12) נתון רק גודל אחד [מספר העפרונות של סער] ונתון היחס [הקשר, ההפרש] בין שני הגדלים. צריך למצוא את הגודל השני [מספר העפרונות של כרמלה]. בבעיות (2)  -  (9)  היו נתונים שני הגדלים ומצאנו את היחס [את ההפרש]   ביניהם.
מה עלי לעשות כדי למצוא את מספר העפרונות של כרמלה?
ת: צריך לחבר 8 ל - 4 .
מ: שימו לב לסיפור החדש שלי.
(13) לכרמלה יש 8 עפרונות יותר מאשר לסער. לכרמלה יש 12 עפרונות. כמה עפרונות יש לסער? במה שונה הסיפור הזה מקודמו מבעייה 12?
ת: ב - (12) אמרת כמה עפרונות יש לסער. בסיפור האחרון אמרת כמה עפרונות יש לכרמלה. 
מ: מה תהיה הפעולה החשבונית שתוביל לתוצאה?
ת: 12 פחות 8.
מ: סיפרתי כמעט אותו סיפור. בשני הסיפורים השתמשתי בביטוי יותר מ ובכל זאת בסיפור החשבוני הקודם עשינו פעולת חיבור, ובסיפור החשבוני האחרון עשינו פעולת חיסור. הסבירו את ההבדל.
ת: ב - (12) נתת את הערך הקטן והיה צריך למצוא את הערך הגדול. ב - (13) נתת את הערך הגדול והיה צריך למצוא את הערך הקטן.
סיכום
מ: מי יכול לסכם מה למדנו עד עכשיו?
ת: למדנו שביטויים כמו יותר מ ב ופחות מ ב מכוונים אותנו לחיבור או לחיסור.
ת: למדנו שאם בבעייה קיימים הביטויים האלה, יתר הנתונים יקבעו אם הפתרון יהיה חיבור או חיסור.
ת: למדנו שכאשר אומרים: יותר מ…  ב ונותנים לנו את המספר הקטן, צריך לחבר, כדי למצוא את המספר הגדול.
מ: פרטו.
ת: בודקים תחילה למי יש יותר ולמי פחות. אם נתון המספר הגדול, מחסרים את ההפרש כדי להגיע למספר הקטן. אם נתון המספר הקטן, מוסיפים את ההפרש כדי לקבל את המספר הגדול.
ת: למדנו שכאשר אומרים : יותר מ ב ונותנים את המספר הגדול , צריך לחסר כדי להגיע למספר הקטן.
ת: למדנו שכאשר אומרים פחות מ ב ונתון הערך הקטן , צריך לחבר כדי לקבל את הערך הגדול. אם נותנים את הערך הגדול, צריך לחסר כדי לקבל את הערך הקטן.
מ: רואים שהבינותם היטב איך להיעזר בלשון כדי להרכיב בעיות מתמטיות. מה הביטויים יותר מב ו - פחות מ ב נותנים לנו?
ת: רמז לאיזה סוג הבעייה שייכת.
מ: נכון. אנחנו קוראים לביטויים כאלה רמזי לשון. למדנו איך להשתמש ברמזי לשון כדי להבין בעיות מתמטיות וגם כדי להמציא בעיות כאלה.
ת: אבל רמזי הלשון לא ממש עוזרים. זה מבלבל לקרוא: פחות מ ובכל זאת לעשות חיבור.
מ: צדקת. כדי לנצל את רמזי הלשון חייבים לבדוק את כל הנתונים של הבעייה. לראות אם נתון הערך הקטן וצריך למצוא את הגדול או להיפך. עכשיו, לאחר שהבינותם, פיתרו את הבעיות הבאות. שימו לב שבחלק מהבעיות מצויין טיבם של הנתונים.
בעיות
1) לשחר יש 3 תפוזים יותר מאשר לגאיה [היחס]לגאיה יש 5 תפוזים [הגודל הקטן, הכמות הקטנה]. כמה תפוזים לשחר [הגודל הגדול, הכמות הגדולה]?
2) לשלומי יש 7 תפוזים [גודל א', כמות א', ערך א'] ליהל יש 3 תפוזים [גודל ב', כמות ב', ערך ב'] .בכמה גדול [היחס] מספר התפוזים של שלומי ממספר התפוזים של יהל?
3) לשלומי יש 7 תפוזים [גודל א'] ליהל יש 3 תפוזים [גודל ב'] . כמה תפוזים יש לשלומי יותר מיהל?
4) לשחר יש 3 תפוזים יותר מאשר לגאיה [היחס]לגאיה יש 5 תפוזים [הגודל הקטן, הכמות הקטנה]. כמה תפוזים לשחר [הגודל הגדול, הכמות הגדולה]?
5) לשחר יש 3 תפוזים יותר מאשר לגאיה [היחס]לשחר יש 8 תפוזים [הגודל הגדול] כמה תפוזים לגאיה[הגודל הקטן]?
6) לשחר יש 3 תפוזים פחות מאשר לגאיה [היחס]לגאיה יש 8 תפוזים [הגודל הגדול] כמה תפוזים לשחר [הגודל הקטן]?
7) לשחר יש 3 תפוזים פחות מאשר לגאיה [היחס]לשחר יש 8 תפוזים [הגודל הקטן] כמה תפוזיםלגאיה [הגודל הגדול]?
8) לשחר יש 3 תפוזים פחות מאשר לגאיה [היחס]לגאיה יש 8 תפוזים [הגודל הגדול] כמה תפוזים לשחר [הגודל הקטן]?
9) בארגז אחד היו 32 תפוזים, ב - 11 תפוזים יותר מבארגז שני. כמה תפוזים היו בארגז השני?
10) מספר התלמידים בכיתה א' גדול ב - 4 ממספר התלמידים בכיתה ב'. כמה תלמידים בכיתה ב', אם בכיתה א' יש 32 תלמידים?
11) בשכונת "יואב"  יש 86 בתים. בשכונת "הראל" יש 7 בתים יותר משכונת "יואב". כמה בתים יש בשכונת "הראל"?
12) בית חרושת לנייר ייצר מחברות בשני גדלים. המחברות הקטנות הכילו 40 דף. המחברות הגדולות הכילו 32 דפים יותר. כמה דפים הכילה מחברת גדולה?
13) אדם הוציא בחודש ינואר 587 ש"ח על מזון. סכום זה קטן ב - 97 ש"ח מהסכום שהוא הוציא בחודש פברואר. כמה כסף הוא שילם בעבור מזון בחודש פברואר?
14) גדר שאורכה 126 מ' מקיפה גן של בית. גדר שמקיפה את  הבית והגן כאחד ארוכה ב - 530 מ' יותר מזו של הגן. מה אורך הגדר שמקיפה את הבית?
15) בשוק מכרו אבטיח ומלון. משקל האבטיח 5420 גרם. המלון שקל 3201 גרם פחות מהאבטיח. מה משקל המלון?
16) רדיו עלה 156.80 ש"ח. מכשיר וידיאו היה יקר ב - 1890 ש"ח מהרדיו. מה היה מחירו של הוידיאו?
17) פועל קיבל שכר של 6782 ש"ח. חברו קיבל שכר גבוה ב - 672 ש"ח. כמה הרוויח החבר?
18) מר כהן הרוויח ב - 2781 ש"ח יותר ממר לוי. מר כהן הרוויח 6721 ש"ח. כמה כסף הרוויח מר לוי?    
19) בספר קריאה היו 189 עמודים פחות מאשר בספר הלימוד. כמה עמודים בספר הלימוד אם בספר הקריאה היו 237 עמודים?
20) בבית ספר "ירדן" יש 562 תלמידים יותר ממספר התלמידים בבית ספר "רמת-אביב". מספר התלמידים ב"ירדן" היה 4568 . כמה תלמידים ב"רמת-אביב"?
21) בבית בד להכנת שמן זית הביאו בשנת תשס"א 675 ק"ג זיתים. בשנת תשס"ב הביאו לאותו בית בד 194 ק"ג יותר של זיתים. כמה ק"ג זיתים הביאו לבית הבד בשנת תשס"ב?
22) מחיר כרטיס טיסה לאמריקה היה 1238 דולר. המחיר הוזל ב - 350 דולר. מה היה מחיר הכרטיס לאחר ההוזלה?
23) ארון נמכר ב - 4521 ש"ח , לאחר הנחה של 854 ש"ח. מה היה מחיר הארון לפני ההוזלה? 


יחסי גודל המתבטאים בפעולות כפל וחילוק
לעומת הבעיות העוסקות בהפרש יש בעיות שעוסקות במספר הפעמים שגודל אחד מכיל גודל אחר. המילה פי מתארת יחס זה.
רמזי הלשון: גדול פי או קטן פי מובילים או לחילוק או לכפל, תלוי בבעייה.

גדול פי  המוביל לכפל
דוגמא
בחדר אחד היו 8 שולחנות. מספר השולחנות בחדר השני גדול פי 3 מזה שבראשון. כמה שולחנות היו בחדר השני?

גדול פי  המוביל לחילוק
דוגמא
בחדר אחד היו 8 שולחנות. מספרם גדול פי 2 ממספר השולחנות בחדר השני. כמה שולחנות היו בחדר השני?

קטן פי  המוביל לכפל
דוגמא
בחדר אחד היו 8 שולחנות. מספר השולחנות בחדר זה קטן פי 2 ממספר השולחנות בחדר השני. כמה שולחנות בחדר השני?

קטן פי  המוביל לחילוק
דוגמא
בחדר אחד היו 8 שולחנות. מספר השולחנות בחדר זה גדול פי 2 ממספר השולחנות בחדר השני. כמה שולחנות בחדר השני?

יש לזכור כי כאשר עוסקים ביחס המתמטי מתכוונים ליחס המתבטא ב " פי  יותר" או ב "פי פחות". הכופל או המחלק שמבטאים את היחס הזה הם מספרים טהורים, כלומר מספרים ללא כינוי.

שני הסברים לשימוש בכפל בעת הטיפול ביחס
דוגמא
א) קבוצת מטיילים אחת מנתה 10 מטיילים. בקבוצת מטיילים שנייה היו פי 3 יותר מטיילים. כמה מטיילים היו בקבוצה השנייה?
התרגיל:
 30 מטיילים =  10 מטיילים x  3


הסבר א' לכפל

30 מטיילים =  10 מטיילים x  3 ,
הוא:
אם ניקח 3 פעמים את 10 המטיילים של הקבוצה הראשונה, נקבל את מספר המטיילים של הקבוצה השנייה.
בהסבר הזה מודגש האספקט הכמותי של הבעייה. 3 פעמים של א' ייתן את ב'. 

הסבר ב' לכפל

כאשר, בגלל חוק החילוף של הכפל, נרשום את התרגיל הזה כך:
30 מטיילים =  3 x  10 מטיילים,
פירושו של התרגיל הוא:
אם ניכפול את מספר המטיילים בקבוצה א' ב - 3 [ביחס הנתון] , נקבל את מספר המטיילים בקבוצה ב'.
בהסבר זה מודגשת העובדה שיש לכפול או לחלק את הגודל הנתון ביחס הנתון, כדי לקבל את הגודל הנעלם.
בהסבר זה מודגש אופן השימוש ביחס נתון. זהו הסבר נוח למעבר אל החילוק בבעיות של יחס, בו מחלקים את הגודל הנתון ביחס הנתון.
דוגמא לבעייה כזו:
קבוצת מטיילים אחת מנתה 10 מטיילים. בקבוצת מטיילים שנייה היו פי 2 פחות מטיילים. כמה מטיילים היו בקבוצה השנייה?
התרגיל:
5 מטיילים =  2  :  10 מטיילים

דוגמא לדיון בבעיות של יחס
מ: הבנתם יפה מאוד איך ליצור סיפור חשבוני וגם איך לפתור אותו, אבל אנחנו עוד לא הכנסנו כפל וחילוק לסיפורים שלנו. יש לכם הצעות?
ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. באיזה מספר נכפיל את מספר העפרונות של סער כדי לקבל את מספר העפרונות של כרמלה?
ת: לכרמלה 12 עפרונות. לסער 4 עפרונות. באיזה מספר נחלק את מספר העפרונות של כרמלה כדי לקבל את מספר העפרונות של סער?
מ: את הרעיון שלכם אפשר לומר גם כך:
1) לכרמלה 12 עפרונות. לסער 4 עפרונות. פי כמה גדול מספר העפרונות של כרמלה ממספר העפרונות של סער?
או:
2) לכרמלה 12 עפרונות. לסער 4 עפרונות. פי כמה קטן מספר העפרונות של סער ממספר העפרונות של כרמלה?
מ: גם בבעיות אלה יש שלושה מרכיבים: גודל א' [כמות א', ערך א']  ,  גודל ב' [כמות ב', ערך ב']  ,  היחס ביניהם.
ציינו בבעיות שהצעתם את הגדלים ואת היחס.
1) ת: לכרמלה 12 עפרונות [גודל א', כמות א', ערך א']. לסער 4 עפרונות [גודל ב', כמות ב', ערך ב']. פי כמה גדול [היחס] מספר העפרונות של כרמלה ממספר העפרונות של סער?
2) ת: לכרמלה 12 עפרונות [גודל א', כמות א', ערך א']. לסער 4 עפרונות [גודל ב', כמות ב', ערך ב']. פי כמה קטן [היחס] מספר העפרונות של סער ממספר העפרונות של כרמלה?


מ: נפתור ביחד את הבעיות האלה.
1) לכרמלה 12 עפרונות. לסער 4 עפרונות. פי כמה גדול מספר העפרונות של כרמלה ממספר העפרונות של סער?
פתרון
3  =  4 עפרונות :  12 עפרונות
שפירושו: כמה פעמים 12 מכיל את 4.
כלומר, אם נחלק את 12 ב - 4 נקבל ש - 12 גדול פי 3 מ - 4.
מ: מה תהיה התשובה?
ת: מספר העפרונות של כרמלה גדול פי שלושה ממספר העפרונות של סער.
מ: נבדוק את הבעייה בניסוחה  השני:
2) לכרמלה 12 עפרונות. לסער 4 עפרונות. פי כמה קטן מספר העפרונות של סער ממספר העפרונות של כרמלה?
מהו הפתרון?
3  =  4 עפרונות :  12 עפרונות
זה מתאים לשאלה כמה פעמים 4 מוכל [נכנס] ל - 12.

הפתרון הוא בדיוק כמו הקודם.
מ: נכון. אנחנו פועלים באותה דרך כדי למצוא פי כמה יותר או פי כמה פחות
התרגיל תמיד יהיה  תרגיל של חילוק. מחפשים את המנה [= היחס].
ת: זה מזכיר את בעיות החיבור והחיסור. כאשר נתונים שני הגדלים ומחפשים את היחס תמיד מחשבים את ההפרש, גם אם שואלים: בכמה גדול ? וגם אם שואלים בכמה קטן ? ביחסים של גדול פי וגדול מ תמיד מחפשים את המנה גם אם שואלים: פי כמה פחות?  וגם אם שואלים: פי כמה יותר?
מ: נכון.  אני מציגה שתי בעיות חדשות:
3) לכרמלה 12 בולים. כמה בולים יש לסער אם ידוע שמספר הבולים שלה גדול פי 3 ממספר הבולים של כרמלה?
4) לסער 4 בולים. כמה בולים לכרמלה אם ידוע שמספר הבולים של כרמלה גדול פי 3 ממספר הבולים של סער?
מה נתון ומה צריך למצוא בבעיות האלה?
ת: 3) לכרמלה 12 בולים [הגודל הגדול, הכמות הגדולה, הערך הגדול]. כמה בולים יש לסער [הגודל הקטן, הכמות הקטנה, הערך הקטן] אם ידוע שמספר הבולים שלה גדול פי 3 [היחס] ממספר הבולים של סער?
נתון הגודל הגדול והיחס. צריך למצוא את הגודל הקטן.
מ: מה תהיה הפעולה?
ת: חילוק.
 התרגיל:
4  בולים =  3  :  12 בולים
הסבר:
אם מספר הבולים שלה גדול פי 3 ממספר הבולים שלו. מספר הבולים שלו קטן פי 3. צריך לחלק את מספר הבולים שלה ב - 3 , כדי לקבל את הגודל הקטן.
מ: איך נפתור את (4)?
4) התרגיל:
12 בולים =  3  x  4 בולים
אם מספר הבולים שלה גדול פי 3 ממספר הבולים שלו. צריך לכפול את מספר הבולים שלו ב - 3.
מ: מה המסקנה שלנו?
ת: כאשר אומרים: גדול פי ונותנים את המספר הקטן, צריך לכפול כדי למצוא את המספר הגדול.
ת: כאשר אומרים: גדול פי ונותנים את המספר הגדול, צריך לחלק כדי למצוא את המספר הקטן.
מ: חישבו איך עבדנו בחיבור ובחיסור. לפי מה שלמדנו. מה אני צריכה ללמד אתכם עכשיו?
ת: מה קורה כאשר אומרים: קטן פי או  פי כמה פחות?
מ: נתבונן בבעייה הבאה:
5) לשרית יש 10 סוכריות. לאריק יש פי 2 פחות סוכריות. כמה סוכריות לאריק?
מה נתון ומה צריך למצוא?
ת: נתון הגודל הגדול [הכמות הגדולה, הערך הגדול] , נתון היחס. צריך למצוא את הגודל הקטן [הכמות הקטנה, הערך הקטן].
מ: פרט.
ת: 5) לשרית יש 10 סוכריות [הגודל הגדול] . לאריק יש פי 2 פחות [היחס] סוכריות. כמה סוכריותלאריק [הגודל הקטן]?
מ: מה הפתרון?
ת: 5 סוכריות =   2  :  10 סוכריות
צריך לחלק את הכמות הגדולה כדי לקבל את הכמות הקטנה.
מ: איזה סוג של בעייה נשארה לנו לטיפול?
ת: שהיחס יהיה נתון: פי פחות, שהגודל הקטן יהיה נתון, ונצטרך למצוא את הגודל הגדול.
מ: נכון.
6) לאריק יש 10 סוכריות [הגודל הקטן]. לאריק יש פי 2 פחות [היחס] סוכריות מאשר לשרית. כמה סוכריות לשרית [הגודל הגדול]?
ת: הפתרון הוא:
20 סוכריות =  2  x  10 סוכריות
סיכום הנושא של יחסי גודל המתבטאים בפעולות כפל וחילוק
מ: מה למדנו בנושא של בעיות של פי  יותר, פי פחות ?
- למדנו שהביטויים גדול ב  או קטן ב מובילים לחיבור או לחיסור. תלוי בנתונים, לעומתם למדנו שהביטויים גדול פי או קטן פי מובילים לכפל או לחילוק. תלוי בנתונים.
- למדנו שכאשר נתונים שני הגדלים [הכמויות] ומחפשים את היחס, שהוא פי, צריך למצוא את המנה והפעולה היא: חילוק .
- למדנו שכאשר נתון הגודל הקטן [הכמות הקטנה] והיחס: גדול פי ומחפשים את הכמות הגדולה, צריך לכפול.
למשל:
יקיר קנה שני סוגים של מחברות. במחברת אחת היו 10 עמודים [הכמות הקטנה]. מספר העמודים במחברת השנייה היה גדול פי 4 [היחס] ממספר העמודים במחברת הראשונה. כמה עמודים היו במחברת השנייה [הכמות הגדולה]?
התרגיל:
40 עמודים =  4  x  10 עמודים
- למדנו שכאשר נתון הגודל הגדול [הכמות הגדולה] והיחס: גדול פי ומחפשים את הכמות הקטנה, צריך לחלק.
למשל:
יקיר קנה שני סוגים של מחברות. במחברת אחת היו 40 עמודים [הכמות הגדולה]. מספר העמודים במחברת זו היה גדול פי 4 [היחס] ממספר העמודים במחברת השנייה. כמה עמודים היו במחברת השנייה [הכמות הקטנה]?
התרגיל:
10 עמודים =  4  :  40 עמודים

- למדנו שכאשר נתון הגודל הקטן [הכמות הקטנה] והיחס: קטן פי ומחפשים את הכמות הגדולה, צריך לכפול.
למשל:
לקרן היו 10 תפוזים [הכמות הקטנה]. מספר זה היה קטן פי 2 [היחס] ממספר התפוזים של ירדן [הכמות הגדולה]. כמה תפוזים לירדן?
התרגיל:
20 תפוזים  =  2  x  10 תפוזים
- למדנו שכאשר נתון הגודל הגדול [הכמות הגדולה] והיחס: קטן פי ומחפשים את הכמות הקטנה, צריך לחלק.
למשל:
לקרן היו 10 תפוזים [הכמות הגדולה]. מספר התפוזים שבידי ירדן היה קטן פי 2 [היחס] ממספר התפוזים של קרן [הכמות הקטנה]. כמה תפוזים לירדן?
התרגיל:
5 תפוזים =  2  :  10 תפוזים

סיכום למורה

כדאי לזכור את השלבים הנדרשים לפתרון בעיות כאלה:
1. זיהוי הכיוון של הפער: למי יש יותר ולמי יש פחות?
2. מה נתון? הערך הנמוך או הגבוה?
3. מהו טיב היחס?
3. מה רוצים לדעת?
4. מהי הפעולה החשבונית הנדרשת?

רצוי לתלות בכיתה פלקט שעליו מסורטטת הטבלה הבאה, שתיבנה על ידי הילדים והמורה:
טבלה לסיכום מערכות היחסים ופעולות החשבון הנובעות מהן
בכמה יותר?
הגודל הגדול
הגודל הקטן
היחס
הפעולה
נתון
נתון
?
חיסור
הקטן מהגדול
נתון
?
הפרש - נתון
חיסור
ההפרש מהגדול
?
נתון
הפרש - נתון
חיבור
ההפרש לקטן
בכמה פחות?
הגודל הגדול
הגודל הקטן
היחס
הפעולה
נתון
נתון
?
חיסור
הקטן מהגדול
נתון
?
הפרש - נתון
חיסור
ההפרש מהגדול
?
נתון
הפרש - נתון
חיבור
ההפרש לקטן
פי כמה יותר?
הגודל הגדול
הגודל הקטן
היחס
הפעולה
נתון
נתון
?
חילוק הגדול בקטן
נתון
?
מנה של חילוק גדול בקטן
נתון
חילוק
הגדול ביחס (במנה)
?
נתון
מנה של חילוק גדול בקטן
נתון
כפל
הקטן במנה
פי כמה פחות?
הגודל הגדול
הגודל הקטן
היחס
הפעולה
נתון
נתון
מנה של חילוק גדול בקטן
?
חילוק גדול בקטן
נתון
?
מנה של חילוק גדול בקטן
נתון
חילוק
הגדול ביחס (במנה)
?
נתון
מנה של חילוק גדול בקטן
נתון
כפל
הקטן במנה


מומלץ לתת לילדים להמציא מספר רב של בעיות יחס ולפתור אותן ביחד.
סיכום
רמזי לשון עשויים לסייע בהבנת מערכות היחסים המתמטיים. לדוגמא, גדול ב מוביל או לחיבור או לחיסור. עם זאת, הרמזים האלה עלולים להטעות. לדוגמא, יש ילדים שנוטים לתרגם את "גדול מ" תמיד כחיבור ואת "קטן מ" תמיד כחיסור. הם מתעלמים מהנתון הנוסף הקובע את הפעולה הנדרשת. הוא הדין לגבי "גדול פי" או "קטן פי".
מאחר שהבנת בעיות מותנית בהבנה הלשונית והתרגום משפת הדיבור לשפה המתמטית הוא המפתח להבנה המתמטית, יש להשקיע מאמץ רב בטיפול ברמזי לשון ולהביא את התלמידים לשימוש מודע ומושכל בהם.    

אין תגובות:

פרסום תגובה